20. A is the point with coordinates $(2, 3)$.

$$\overrightarrow{AB} = \begin{pmatrix} 5 \\ -4 \end{pmatrix}.$$

Find the coordinates of B.

OPQR is a rectangle.

D is the point on OP such that \(OD = \frac{1}{3} \) \(OP \).

E is the point on OQ such that \(OE = \frac{2}{3} \) \(OQ \).

PQF is the straight line such that \(QF = \frac{1}{3} \) \(PQ \).

\(\overrightarrow{OD} = a \quad \overrightarrow{OR} = 3b \)

(a) Find, in terms of \(a \) and \(b \),

(i) \(\overrightarrow{OQ} \) (ii) \(\overrightarrow{OE} \) (iii) \(\overrightarrow{DE} \)

(b) Use a vector method to prove that DEF is a straight line.
$OABC$ is a parallelogram.
BCD is a straight line.
$BD = 3BC$.
M is the midpoint of OC.
$\overrightarrow{OA} = x \quad \overrightarrow{AB} = y$

(a) Find, in terms of x and y,

(i) \overrightarrow{AM}
(ii) \overrightarrow{OD}

(b) Use your answers to (a)(i) and (ii) to write down two different geometric facts about the lines AM and OD.
21

\[\text{Diagram NOT accurately drawn} \]

\[\overrightarrow{AB} = 12a \]
\[\overrightarrow{AD} = 3b \]
\[\overrightarrow{DC} = 18a \]

\[E \text{ is the point on the diagonal } DB \text{ such that } DE = \frac{1}{3} DB. \]

(a) Find, in terms of \(a \) and \(b \),

(i) \(\overrightarrow{DB} \)

(ii) \(\overrightarrow{DE} \)

(iii) \(\overrightarrow{AE} \)

(b) Show by a vector method that \(BC \) is parallel to \(AE \).
21

$OABC$ is a parallelogram.

$\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OC} = \mathbf{c}$

P is the point on AB such that $AP = \frac{1}{4} AB$.

Q is the point on OC such that $OQ = \frac{2}{3} OC$.

Find, in terms of \mathbf{a} and \mathbf{c}, \overrightarrow{PQ}.

Give your answer in its simplest form.
Vectors IGCSE Higher Tier Exam Questions

Jan 2015 4H Paper

19 \[\mathbf{a} = \begin{pmatrix} 5 \\ -2 \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} 1 \\ 7 \end{pmatrix}, \quad \mathbf{c} = \begin{pmatrix} -7 \\ 0 \end{pmatrix} \]

(a) Write, as a column vector, \(2\mathbf{a}\)

(b) Write, as a column vector, \(3\mathbf{b} - \mathbf{c}\)

(c) Work out the magnitude of \(\mathbf{a}\)
 Give your answer as a surd.

Jan 2015 4HR Paper

15 Here is the parallelogram \(ABCD\).

\[
\overrightarrow{AD} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \quad \overrightarrow{AB} = \begin{pmatrix} 5 \\ 3 \end{pmatrix}
\]
(a) Find the magnitude of \overrightarrow{AD}.

Give your answer correct to 3 significant figures.

The point A has coordinates $(4, 2)$

(b) Work out the coordinates of the point C.

The diagonals of the parallelogram $ABCD$ cross at the point E.

(c) Find as a column vector, \overrightarrow{OE}.

In triangle OPQ, $\overrightarrow{OP} = 6a$ and $\overrightarrow{OQ} = 6b$

X is the midpoint of PQ.

(a) Find, in terms of a and b, the vector \overrightarrow{OX}

Give your answer in its simplest form.

Y is the point on OX such that $OY : YX = 2 : 1$

(b) Find, in terms of a and b, the vector \overrightarrow{QY}

Give your answer in its simplest form.
PQ is a triangle.
The midpoint of PQ is W.
X is the point on QR such that $QX : XR = 2 : 1$
PRY is a straight line.

$\overrightarrow{PW} = a, \overrightarrow{PR} = b$

(a) Find, in terms of a and b,

(i) \overrightarrow{QR}

(ii) \overrightarrow{QX}

(iii) \overrightarrow{WX}
17 $ABCD$ is a parallelogram.

$\overrightarrow{BC} = \begin{pmatrix} 5 \\ -1 \end{pmatrix} \quad \overrightarrow{DC} = \begin{pmatrix} -2 \\ 3 \end{pmatrix}$

Find \overrightarrow{BD} as a column vector.

Diagram NOT accurately drawn

Jan 2016 3H Paper

23

OAB is a triangle.

P is the point on OA such that $OP : PA = 2 : 1$

C is the point such that B is the midpoint of OC.

M is the midpoint of AB.

$\overrightarrow{OA} = 6a \quad \overrightarrow{OB} = 4b$

Show that PMC is a straight line.
19 The diagram shows a grid of equally spaced parallel lines. The point P and the vectors \mathbf{a} and \mathbf{b} are shown on the grid.

\[
\overrightarrow{PQ} = 3\mathbf{a} + 4\mathbf{b}
\]

(a) On the grid, mark the vector \overrightarrow{PQ}

\[
\overrightarrow{PR} = -4\mathbf{a} + 2\mathbf{b}
\]

(b) On the grid, mark the vector \overrightarrow{PR}

(c) Find, in terms of \mathbf{a} and \mathbf{b}, the vector \overrightarrow{QR}

The point M lies on PR such that $PM = \frac{2}{3} PR$

The point N lies on PQ such that $PN = \frac{1}{3} PQ$

(d) Show that $\overrightarrow{MN} = k\mathbf{a}$ where k is a constant. State the value of k.

OMN is a triangle.

P is the point on OM such that \(OP = \frac{1}{4} OM \)

P is the point on OM such that \(OP = \frac{1}{4} OM \)

Q is the midpoint of ON
R is the midpoint of PN

\[\overrightarrow{OP} = \mathbf{p} \quad \overrightarrow{OQ} = \mathbf{q} \]

(a) Find, in terms of \(\mathbf{p} \) and \(\mathbf{q} \),
 (i) \(\overrightarrow{MN} \)
 (ii) \(\overrightarrow{PR} \)

(b) Use a vector method to prove that QR is parallel to OP
\(\overrightarrow{AB} \) is parallel to \(\overrightarrow{DC} \)
\(\overrightarrow{DC} = 2\overrightarrow{AB} \)
\(M \) is the midpoint of \(BC \)
\(\overrightarrow{AD} = 2\mathbf{b} \)
\(\overrightarrow{AB} = 4\mathbf{a} \)

(a) Find \(\overrightarrow{BM} \) in terms of \(\mathbf{a} \) and \(\mathbf{b} \).
 Give your answer in its simplest form.

\(N \) is the point such that \(DCN \) is a straight line and \(DC : CN = 2 : 1 \)
(b) Show that \(AMN \) is a straight line.
21. \[\text{Diagram NOT accurately drawn} \]

\[\overrightarrow{PQRS} \text{ is a trapezium with } \overrightarrow{PQ} \text{ parallel to } \overrightarrow{SR}. \]
\[\overrightarrow{SR} = \mathbf{a} \quad \overrightarrow{PQ} = 3\mathbf{a} \quad \overrightarrow{PS} = \mathbf{b} \]

\(T \) is the point on \(SQ \) such that \(ST = \frac{1}{4}SQ \).

(a) Find, in terms of \(\mathbf{a} \) and \(\mathbf{b} \),

(i) \(\overrightarrow{PR} \)

(ii) \(\overrightarrow{SQ} \)

(iii) \(\overrightarrow{PT} \)

(b) \(\overrightarrow{PT} = k \overrightarrow{PR} \) where \(k \) is a fraction.

(i) What does this result tell you about the points \(P, T \) and \(R? \)

(ii) Find the value of \(k \).
21.

In the diagram $\overrightarrow{OA} = a$ and $\overrightarrow{OC} = c$.

(a) Find \overrightarrow{CA} in terms of a and c.

(b) The point B is such that $\overrightarrow{AB} = \frac{1}{2} c$.

Give the mathematical name for the quadrilateral $OABC$.

(c) The point P is such that $\overrightarrow{OP} = a + kc$, where $k \geq 0$

State the two conditions relating to $a + kc$ that must be true for $OAPC$ to be a rhombus.
18. The diagram shows a parallelogram, $ABCD$.
 M is the midpoint of BC.
 N is the midpoint of AD.

\[
\overrightarrow{AB} = x \\
\overrightarrow{AD} = y
\]

Find, in terms of x and/or y, the vectors

(a) \overrightarrow{MN}

(b) \overrightarrow{AC}

P is the point such that $\overrightarrow{CP} = y - \frac{1}{2} x$

(c) Find, in terms of x and/or y, the vector \overrightarrow{PA}
 Simplify your answer as much as possible.
19. The diagram shows a trapezium $ABCD$.

\[\overrightarrow{BC} = 2\overrightarrow{AD}, \]
\[\overrightarrow{AB} = x. \quad \overrightarrow{AD} = y. \]

(a) Find, in terms of x and y,

(i) \overrightarrow{AC}

(ii) \overrightarrow{DC}

(b) The point E is such that $\overrightarrow{AE} = x + y$.
Use your answer to part (a)(ii) to explain why $AECD$ is a parallelogram.
21. \(PQRSTU \) is a regular hexagon, centre \(O \).
The hexagon is made from six equilateral triangles of side 2.5 cm.

\[
\overrightarrow{TU} = \mathbf{a}, \quad \overrightarrow{UP} = \mathbf{b}.
\]

(a) Find, in terms of \(\mathbf{a} \) and/or \(\mathbf{b} \), the vectors

(i) \(\overrightarrow{TP} \)

(ii) \(\overrightarrow{PO} \)

(iii) \(\overrightarrow{UO} \)

(b) Find the modulus (magnitude) of \(\overrightarrow{UR} \).
16. \(PQR \) is a triangle.

\(E \) is the point on \(PR \) such that \(PR = 3PE \).
\(F \) is the point on \(QR \) such that \(QR = 3QF \).

\[\overrightarrow{PQ} = \mathbf{a}, \quad \overrightarrow{PE} = \mathbf{b}. \]

\[\overrightarrow{PQ} = \mathbf{a}, \quad \overrightarrow{PE} = \mathbf{b}. \]

(a) Find, in terms of \(\mathbf{a} \) and \(\mathbf{b} \),

(i) \(\overrightarrow{PR} \)

(ii) \(\overrightarrow{QR} \)

(iii) \(\overrightarrow{PF} \)

(b) Show that \(\overrightarrow{EF} = k \overrightarrow{PQ} \) where \(k \) is an integer.
14. $OABC$ is a parallelogram.

\[
\overrightarrow{OA} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \quad \overrightarrow{OC} = \begin{pmatrix} 4 \\ 0 \end{pmatrix}.
\]

(a) Find the vector \overrightarrow{OB} as a column vector.

(b) Find, in terms of k, the vectors

(i) \overrightarrow{OX},

(ii) \overrightarrow{AX},

(iii) \overrightarrow{XC}.

(c) Find the value of k for which $\overrightarrow{AX} = \overrightarrow{XC}$.

(d) Use your answer to part (c) to show that the diagonals of the parallelogram $OABC$ bisect one another.
16. PQR is a triangle.
 M and N are the midpoints of PQ and PR respectively.

\[\overrightarrow{PM} = \mathbf{a} \quad \overrightarrow{PN} = \mathbf{b}. \]

(a) Find, in terms of \mathbf{a} and/or \mathbf{b},

(i) \overrightarrow{MN}

(ii) \overrightarrow{PO}

(iii) \overrightarrow{QR}

(b) Use your answers to (a)(i) and (iii) to write down two geometrical facts about the lines MN and QR.

22.

\[PQRS \text{ is a parallelogram.} \]

\(X \) is the midpoint of \(QR \) and \(Y \) is the midpoint of \(SR \).

\(\overrightarrow{PQ} = \mathbf{a} \) and \(\overrightarrow{PS} = \mathbf{b} \).

(a) Write down, in terms of \(\mathbf{a} \) and \(\mathbf{b} \), expressions for

(i) \(\overrightarrow{PX} \)

(ii) \(\overrightarrow{PY} \)

(iii) \(\overrightarrow{QS} \)

(b) Use a vector method to show that \(XY \) is parallel to \(QS \) and that \(XY = \frac{1}{2} QS \).