Instructions

- Use black ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Without sufficient working, correct answers may be awarded no marks.
- Answer the questions in the spaces provided
  - there may be more space than you need.
- Calculators may be used.
- You must NOT write anything on the formulae page.
  Anything you write on the formulae page will gain NO credit.

Information

- The total mark for this paper is 100.
- The marks for each question are shown in brackets
  - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Check your answers if you have time at the end.
1. Find the lowest common multiple (LCM) of 20, 30 and 45

2. The first four terms of an arithmetic sequence are 2, 9, 16, 23. Write down an expression, in terms of \( n \), for the \( n \)th term.
Answer ALL TWENTY FIVE questions.

Write your answers in the spaces provided.

You must write down all stages in your working.

1  Find the lowest common multiple (LCM) of 20, 30 and 45

(Total for Question 1 is 3 marks)

2  The first four terms of an arithmetic sequence are

\[ 2 \ 9 \ 16 \ 23 \]

Write down an expression, in terms of \( n \), for the \( n \)th term.

(Total for Question 2 is 2 marks)
The diagram shows a solid prism. The cross section of the prism is a trapezium. The prism is made from wood with density $0.7 \text{ g/cm}^3$.

Work out the mass of the prism.

\[\text{mass} = \text{volume} \times \text{density} \]

\[\text{volume} = \frac{1}{2} (9 + 14) \times 6 \times 10 = 165 \text{ cm}^3\]

\[\text{mass} = 165 \times 0.7 = 115.5 \text{ g}\]

(Total for Question 3 is 4 marks)
4 (a) Simplify \( p^5 \times p^4 \)

(b) Simplify \( (m^4)^{-3} \)

(c) Write down the value of \( c^0 \)

(d) Write \( \sqrt{2} \) as a power of 2

(e) Solve \( 5(x + 7) = 2x - 10 \)
    Show clear algebraic working.

\[ x = \ldots \]

(Total for Question 4 is 7 marks)
5 On 1 May 2012, the cost of 5 grams of gold was 14 000 rupees.
The cost of gold decreased by 7.5% from 1 May 2012 to 1 May 2013

Work out the cost of 20 grams of gold on 1 May 2013

\[ \text{rupees} \]

(Total for Question 5 is 4 marks)
(a) On the grid, translate triangle A by the vector \( \begin{pmatrix} 5 \\ 2 \end{pmatrix} \)  

(b) Describe fully the single transformation that maps triangle A onto triangle B.

(Total for Question 6 is 4 marks)
7  \( a, b, c \) and \( d \) are 4 integers written in order of size, starting with the smallest integer.

The mean of \( a, b, c \) and \( d \) is 15
The sum of \( a, b \) and \( c \) is 39

(a) Find the value of \( d \).

\[
d = \ .....................................................
\]

(2)

Given also that the range of \( a, b, c \) and \( d \) is 10

(b) work out the median of \( a, b, c \) and \( d \).

\[
\text{.....................................................}
\]

(2)

(Total for Question 7 is 4 marks)
8. Kwo invests HK$40 000 for 3 years at 2% per year compound interest.
Work out the value of the investment at the end of 3 years.

HK$.......................................................  

(Total for Question 8 is 3 marks)
9 Solve the simultaneous equations

\[3x + y = 13\]
\[x - 2y = 9\]

Show clear algebraic working.

\[x = \text{........................................................}\]
\[y = \text{........................................................}\]

(Total for Question 9 is 3 marks)

10 Show that \[\frac{4}{3} + \frac{5}{9} = \frac{15}{16}\]

(Total for Question 10 is 3 marks)
ABCDEF is a hexagon.

Work out the value of $y$.

\[ y = \ldots \]

(Total for Question 11 is 4 marks)
12 The table shows information about the amount of money that 120 people spent in a shop.

<table>
<thead>
<tr>
<th>Amount of money (£m)</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 &lt; $m$ ≤ 10</td>
<td>8</td>
</tr>
<tr>
<td>10 &lt; $m$ ≤ 20</td>
<td>17</td>
</tr>
<tr>
<td>20 &lt; $m$ ≤ 30</td>
<td>25</td>
</tr>
<tr>
<td>30 &lt; $m$ ≤ 40</td>
<td>40</td>
</tr>
<tr>
<td>40 &lt; $m$ ≤ 50</td>
<td>22</td>
</tr>
<tr>
<td>50 &lt; $m$ ≤ 60</td>
<td>8</td>
</tr>
</tbody>
</table>

(a) Complete the cumulative frequency table.

<table>
<thead>
<tr>
<th>Amount of money (£m)</th>
<th>Cumulative frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 &lt; $m$ ≤ 10</td>
<td></td>
</tr>
<tr>
<td>0 &lt; $m$ ≤ 20</td>
<td></td>
</tr>
<tr>
<td>0 &lt; $m$ ≤ 30</td>
<td></td>
</tr>
<tr>
<td>0 &lt; $m$ ≤ 40</td>
<td></td>
</tr>
<tr>
<td>0 &lt; $m$ ≤ 50</td>
<td></td>
</tr>
<tr>
<td>0 &lt; $m$ ≤ 60</td>
<td></td>
</tr>
</tbody>
</table>

(1)
(b) On the grid, draw a cumulative frequency graph for your table.

(c) Use your graph to find an estimate for the median amount of money spent in the shop by these people.

£........................................................

(Total for Question 12 is 5 marks)
13 Make $b$ the subject of $P = \frac{1}{2} ab^2 + c$ where $b$ is positive.
14 The line with equation $y = 2x$ is drawn on the grid.

(a) On the same grid, draw the line with equation $4x + 3y = 12$

(b) Show, by shading on the grid, the region defined by all four inequalities

\[ y \leq 2x \]
\[ 4x + 3y \leq 12 \]
\[ y \geq -3 \]
\[ x \leq 4 \]

(Total for Question 14 is 5 marks)
15 There are 100 students in Year 11

All 100 students study at least one of art, drama and music.

- 7 of the students study art and drama and music.
- 23 of the students study art and drama.
- 35 of the students study art and music.
- 12 of the students study music and drama.
- 65 of the students study art.
- 52 of the students study music.

(a) Draw a Venn diagram to show this information.

One of the 100 students is selected at random.

(b) Find the probability that this student studies Drama but not Music.

Given that the student studies Drama,

(c) find the probability that this student also studies Art.

(Total for Question 15 is 5 marks)
16 \( M \) is inversely proportional to \( g^3 \)

\( M = 24 \) when \( g = 2.5 \)

(a) Find a formula for \( M \) in terms of \( g \)

\[
M = \frac{k}{g^3}
\]

\( k = M \cdot g^3 \)

(b) Work out the value of \( g \) when \( M = \frac{1}{9} \)

\[
g = \left( \frac{k}{M} \right)^{\frac{1}{3}}
\]

\( g = \left( \frac{24 \cdot 2.5^3}{\frac{1}{9}} \right)^{\frac{1}{3}} \)

\( g = 5 \)

(Total for Question 16 is 5 marks)
17 The function \( f \) is such that \( f(x) = \frac{3}{x - 2} \)

(a) Find \( f(1) \)

(b) State which value of \( x \) must be excluded from any domain of \( f \)

The function \( g \) is such that \( g(x) = x + 4 \)

(c) Calculate \( fg(2) \)

(1)

(1)

(2)

(Total for Question 17 is 4 marks)

18 Solid \( A \) and solid \( B \) are mathematically similar.

Solid \( A \) has surface area 384 cm\(^2\)
Solid \( B \) has surface area 864 cm\(^2\)
Solid \( B \) has a volume of 2457 cm\(^3\)

Calculate the volume of solid \( A \).

\[
\text{Volume of } A = \frac{384 \times \text{Volume of } B}{864} = \frac{384 \times 2457}{864} \text{ cm}^3
\]

(2)

(Total for Question 18 is 3 marks)
19 Here are nine graphs.

Graph A

Graph B

Graph C

Graph D

Graph E

Graph F

Graph G

Graph H

Graph I

Complete the table below with the letter of the graph that could represent each given equation.

<table>
<thead>
<tr>
<th>Equation</th>
<th>Graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>$y = \sin x$</td>
<td></td>
</tr>
<tr>
<td>$y = 2 - 3x$</td>
<td></td>
</tr>
<tr>
<td>$y = x^2 + x - 6$</td>
<td></td>
</tr>
<tr>
<td>$y = x^3 + 3x^2 - 2$</td>
<td></td>
</tr>
</tbody>
</table>

(Total for Question 19 is 3 marks)
Gemma has 9 counters.  
Each counter has a number on it.

![Counter Numbers](image)

Gemma puts the 9 counters into a bag.  
She takes at random two counters from the bag.

(a) Work out the probability that the number on each counter is an even number.

(b) Work out the probability that the sum of the numbers on the two counters is an odd number.  
Show your working clearly.

(Total for Question 20 is 5 marks)
21 Here is triangle $LMN$, where angle $LMN$ is an obtuse angle.

![Diagram of triangle LMN with sides lengths and angle labeled]

Work out the area of triangle $LMN$.
Give your answer correct to 3 significant figures.

\[ \text{Area} = \ldots \ldots \text{cm}^2 \]

(Total for Question 21 is 6 marks)
22 (a) Write \(2x^2 - 8x + 9\) in the form \(a(x + b)^2 + c\) 

\[
(3)
\]

(b) Hence, or otherwise, explain why the graph of the curve with equation \(y = 2x^2 - 8x + 9 = 0\) does not intersect the \(x\)-axis. 

\[
(1)
\]

(Total for Question 22 is 4 marks)

23 \(ABCD\) is a parallelogram.

\[
\vec{AB} = \begin{pmatrix} 2 \\ 3 \end{pmatrix} \quad \vec{AC} = \begin{pmatrix} 9 \\ 4 \end{pmatrix}
\]

Find the magnitude of \(BC\)

\[
(3)
\]

(Total for Question 23 is 3 marks)
24 Show that \( \frac{\sqrt{12} - 1}{2 - \sqrt{3}} \) can be written as \( 4 + 3\sqrt{3} \)

Show your working clearly.

(Total for Question 24 is 4 marks)

25 A particle moves along a straight line.
The fixed point \( O \) lies on this line.
The displacement of the particle from \( O \) at time \( t \) seconds, \( t \geq 0 \), is \( s \) metres, where

\[ s = t^3 - 5t^2 - 8t + 3 \]

Find the value of \( t \) for which the particle is instantaneously at rest.

\[ t = \ldots \]

(Total for Question 25 is 4 marks)

TOTAL FOR PAPER IS 100 MARKS