Mark Scheme (Results)

Summer 2013

International GCSE Mathematics A
4MA0/3HR
Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world’s leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We’ve been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2013
Publications Code UG036364
All the material in this publication is copyright
© Pearson Education Ltd 2013
General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.

- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.

- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.

- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.

- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.

- Examiners should also be prepared to award zero marks if the candidate’s response is not worthy of credit according to the mark scheme.

- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.

- When examiners are in doubt regarding the application of the mark scheme to a candidate’s response, the team leader must be consulted.

- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

- **Types of mark**
 - M marks: method marks
 - A marks: accuracy marks
 - B marks: unconditional accuracy marks (independent of M marks)

- **Abbreviations**
 - awrt – answers which round to....
 - cao – correct answer only
 - ft – follow through
 - isw – ignore subsequent working
 - SC - special case
 - oe – or equivalent (and appropriate)
 - dep – dependent
 - indep – independent
 - eeo – each error or omission
- **No working**
 If no working is shown then correct answers normally score full marks
 If no working is shown then incorrect (even though nearly correct) answers score no marks.

- **With working**
 If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.
 If it is clear from the working that the “correct” answer has been obtained from incorrect working, award 0 marks.
 Any case of suspected misread loses A (and B) marks on that part, but can gain the M marks.
 If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.
 If there is a choice of methods shown, then no marks should be awarded, unless the answer on the answer line makes clear the method that has been used.
 If there is no answer on the answer line then check the working for an obvious answer.

- **Ignoring subsequent work**
 It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: e.g. incorrect cancelling of a fraction that would otherwise be correct.
 It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect e.g. algebra.
 Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

- **Parts of questions**
 Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another.
Apart from Questions 4c, 5, 21, 23b and 25 (where the mark scheme states otherwise), the correct answer, unless clearly obtained by an incorrect method, should be taken to imply a correct method.

<table>
<thead>
<tr>
<th>Question</th>
<th>Working</th>
<th>Answer</th>
<th>Mark</th>
<th>Notes</th>
</tr>
</thead>
</table>
| 1 (a) | 1 - (0.3 + 0.35 + 0.15) | 0.2 oe | 2 | M1 for a complete method
| | | | | A1 for 0.2 oe as a fraction or percentage eg.20%, \(\frac{1}{5} \) etc. |
| (b) | 0.15 x 40 oe | 6 | 2 | M1
| | | | | A1 cao
| | | | | NB. An answer of \(\frac{6}{40} \) scores M1 A0 |

Total 4 marks

| 2 | 495 ÷ 2.25 | 220 | 3 | M2
| | | | | M1 for 495÷2.15 or 230.2... rounded or truncated to 3 or more sig figs
| | | | | A1 cao
| | | | | **Alternative**
| | | | | M1 for 495÷135 or 3.6 or 3.666.. rounded or truncated to 3 or more sig figs
| | | | | M1dep for “3.6..” x 60
| | | | | A1 220 cao |

Total 3 marks
<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3 (a)</td>
<td>$\frac{6 \times 100}{32}$</td>
<td>18.75</td>
<td>2</td>
<td>M1</td>
<td>Allow "32" from evidence of adding frequencies</td>
<td>A1</td>
</tr>
<tr>
<td></td>
<td>(b)</td>
<td>$(7x10)+(16x30)+(3x50)+(6x70)$</td>
<td></td>
<td></td>
<td>M1</td>
<td>$f \times x$ for 3 products with x used consistently within interval (incl. end points) & intention to add</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$=70 + 480 + 150 + 420$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$=1120$</td>
<td></td>
<td></td>
<td>A1</td>
<td>answer-dependent on at least M1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total 5 marks</td>
<td></td>
</tr>
<tr>
<td>4 (a)</td>
<td>$18a - 12b + 6c$ (oe)</td>
<td>1</td>
<td>B1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(b)</td>
<td>$t(t - 10)$</td>
<td>2</td>
<td>B2</td>
<td>also accept $(t \pm 0)(t - 10)$ for B2</td>
<td>B1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SC</td>
<td>B1 for $t(t - 10t)$</td>
</tr>
<tr>
<td></td>
<td>(c)</td>
<td>$3x = 7 - 2x$</td>
<td></td>
<td></td>
<td>M1</td>
<td>$x = \frac{7}{3} - \frac{2x}{3}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$5x = 7$ or $5x - 7 = 0$</td>
<td>1.4oe</td>
<td>3</td>
<td>A1</td>
<td>answer-dependent on at least M1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total 6 marks</td>
<td></td>
</tr>
</tbody>
</table>
5

\[\frac{8}{18} - \frac{3}{18} \quad \text{or} \quad \frac{8n}{18n} - \frac{3n}{18n}\]

\[\frac{8}{18} - \frac{3}{18} = \frac{5}{18} \quad \text{or} \]

\[\frac{8n}{18n} - \frac{3n}{18n} = \frac{5n}{18n} \left(= \frac{5}{18}\right)\]

M1 for 2 correct fractions with a common denominator a multiple of 9 & 6

A1 \(\frac{5}{18}\) coming from \(\frac{8}{18} - \frac{3}{18}\) or

for final fraction equivalent to \(\frac{5}{18}\)

Total 2 marks

6 (a)

Enlargement (Scale factor) 2 (Centre) (0,4)

B1

NB. Award no marks for more than one transformation (i.e. if NOT a single transformation)

(b)

Shape in correct position

B2 vertices at (2, 0) (6, 0) (10, -4) (10, -8)

B1 for any 2 vertices correct or correct orientation but wrong position or rotating shape P correctly - vertices at (7, 0), (9, 0) (11, -2), (11, -4)

Total 5 marks

7 (a)

\[3 \times (-2)^2 - (5 \times -2) \quad \text{or} \]

\[3(-2)^2 - 5(-2) \quad \text{or} \]

\[3 \times (-2)^2 - 5 \times -2 \quad \text{or} \]

\[3 \times 4 - 5 \times -2\]

M1 or 12 – 10 or 12 + 10 or 12 and -10

A1 cao

Total 5 marks

(b)

\[12 = 3 \times 4^2 - 4n\]

\[4n = 48 - 12\]

M1

M1

M1 or M2 for 48 – 12 or 36

A1 cao

Total 5 marks
<table>
<thead>
<tr>
<th>Question</th>
<th>Description</th>
<th>Marks</th>
<th>Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 (a) (i)</td>
<td>u, p, e, r</td>
<td>1</td>
<td>B1</td>
</tr>
<tr>
<td>(ii)</td>
<td>s, c, o, m, p, u, t, e, r</td>
<td>1</td>
<td>B1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Allow in any order</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Brackets and commas not necessary</td>
</tr>
<tr>
<td>(b)</td>
<td>no</td>
<td>1</td>
<td>B1</td>
</tr>
<tr>
<td></td>
<td>2 (or 3) are prime</td>
<td>1</td>
<td>B1</td>
</tr>
<tr>
<td></td>
<td>2 (or 3) belongs to X & Y etc</td>
<td>1</td>
<td>B1</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>3 marks</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Question</th>
<th>Description</th>
<th>Marks</th>
<th>Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 (a) (i)</td>
<td>6^8</td>
<td>1</td>
<td>B1</td>
</tr>
<tr>
<td>(ii)</td>
<td>9^{14}</td>
<td>1</td>
<td>B1</td>
</tr>
<tr>
<td></td>
<td>(oe e.g. 3^{28}; 81^7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b)</td>
<td>5^4 \times 5^3 = 5^{10} \text{ or } \frac{5^n}{5^6} = 5 \text{ or } \frac{5^n}{5^3} = 5^4</td>
<td>2</td>
<td>M1</td>
</tr>
<tr>
<td></td>
<td>or 5^{n+3} = 5^{4+6}</td>
<td>7</td>
<td>A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SC B1 for an answer of 5^7</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>4 marks</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Question</th>
<th>Description</th>
<th>Marks</th>
<th>Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>\pi \times 36.6^3 (= 4208.35..)</td>
<td></td>
<td>M1</td>
</tr>
<tr>
<td></td>
<td>85 \times 2 \times 36.6 (=6222)</td>
<td></td>
<td>M1</td>
</tr>
<tr>
<td></td>
<td>“4208.35..” + “6222” (=10430.35..)</td>
<td></td>
<td>M1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>M1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>awrt 10400</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(accept correct answers given in an alternative form eg. 1.04 \times 10^4; 104 \times 10^2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SC: B2 for an awrt 7320</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>4 marks</td>
</tr>
</tbody>
</table>
Question 11

Identify \(\sin 52 \) or \(\cos 38 \)

\[
\sin 52 = \frac{6.8}{x} \quad \text{or} \quad (x = \frac{6.8}{\sin 52})
\]

\[
\cos 38 = \frac{6.8}{x} \quad \text{or} \quad (x = \frac{6.8}{\cos 38})
\]

\[
\frac{x}{\sin 90} = \frac{6.8}{\sin 52}
\]

\[
8.63
\]

M1 for use of \(\sin 52 \) or use of \(\cos 38 \)

A1 (8.62932..) awrt 8.63

Total 3 marks

Question 12

(a) (i) \(4200000 \)

(b) \(8.6 \times 10^{-9} \quad 5.64 \times 10^{-8} \quad 5.6 \times 10^{-7} \)

Total 4 marks

Question 13

(a) Correct \(v \div h \) eg. \(2 \div 8 \quad \text{or} \quad \frac{5-3}{8-0} \)

\(0.25 \)

M1 or \(y = mx + 3 \) with any \((x, y) \) on \(L \) substituted eg. \(5 = 8m + 3 \)

A1

(b) \(y = "0.25"x + 3 \)

B1 ft Accept equivalents (e.g. \(4y = x + 12 \))

Gradient used must be \(0.25 \) or the gradient found in (a)

(c) \(y = "0.25"x - 1 \)

\(2 \)

M1ft for \(y = "0.25"x + c \) (\(c \neq -1 \))

or \(c = -1 \) as a statement

or \("0.25"x - 1 \)

or \(L = "0.25"x - 1 \)

or \(-2 = "0.25" \times 4 + c \)

A1ft from "0.25" with \(c = -1 \) or \(c \) evaluated

Total 5 marks
<table>
<thead>
<tr>
<th>Question</th>
<th>Expression</th>
<th>Marks</th>
<th>Grade</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 (a)</td>
<td>[8 \times \frac{8}{5} \text{ oe}]</td>
<td>12.8 oe</td>
<td>2</td>
<td>M1 oe</td>
</tr>
</tbody>
</table>
| 14 (b) | \[12 \times 1.6^2\] | 30.72 | 2 | M1 M1 for 1.6\(^2\) (= 2.56) or 0.625\(^2\) (= 0.39) \(\text{or}\) | \(\left(\frac{8}{5}\right)^2 = \frac{64}{25}\) or \(\left(\frac{5}{8}\right)^2 = \frac{25}{64}\) \(\text{or}\) 0.5 \(\times\) 8 \(\times\) "12.8" \(\times\) sin 36.9icao | \(\text{Total 4 marks}\)
| 15 | Blocks at heights 2.4, 6.8, 3 squares | | B3 for all 3 blocks correct | B3 for all 3 blocks correct | (B2 for any 2 blocks correct) | (B1 for any one block correct or for correct frequency density calculated or marked ((0.8), 1.2, 3.4 and 1.5) or 1 square = 2.5 people stated or 1 person = 10 squares) | \(\text{Total 3 marks}\)
| 16 | 168.5 – 121.5 | 47 | 2 | M1 for 168.5 or 168.49 or 168.499... or 121.5 | A1 for 47 with no incorrect working | \(\text{Total 2 marks}\)
| 17 | \(t^2 = \) \(n(t^2 - 1) = 3\) | \(n = \) | 4 | M1 squaring both sides | M1 isolating terms in \(n\) | M1 factorising | A1 or \(n = \frac{3}{(t+1)(t-1)}\) or \(n = \frac{-3}{1-t^2}\) or \(n = \frac{-3}{(1-t)(1+t)}\) | \(\text{Total 4 marks}\)
Question 18

(a)

\[1 - \frac{1}{2} - \frac{1}{3} \left(= \frac{1}{6}\right)\]

Correct fractions on branches for \(\frac{1}{6}\) oe

Correct values in correct places on full tree 3 marks

Note: (simplest form of fractions is **not** necessary)

(accept \(\frac{1}{6}\) and/or \(\frac{1}{3}\) rounded or truncated to 2 or more decimal places eg 0.16, 0.17, 0.33 etc)

SC: If M1 cannot be awarded then award B1 if top two branches in 2nd and 3rd games are **correct**

(b)

\[
\frac{1}{3} + \frac{1}{2} \times \frac{1}{3} + \frac{1}{2} \times \frac{1}{6} \times \frac{1}{6} + \frac{1}{2} \times \frac{1}{6} \times \frac{1}{6} \times \frac{1}{6} \times \frac{1}{6} \times \frac{1}{6} \times \frac{1}{6}
\]

M2 for \(\frac{1}{2} \times \frac{1}{3}\) or \(\frac{1}{2} \times \frac{1}{6} \times \frac{1}{6}\) or \(\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}\)

A1 accept 0.583... rounded or truncated to 2 or more sf

Alternative method for (b)

\[1 - \left(\frac{1}{6} + \frac{1}{2} \times \frac{1}{6} + \frac{1}{2} \times \frac{1}{6} \times \frac{1}{6} + \frac{1}{2} \times \frac{1}{6} \times \frac{1}{6} \times \frac{1}{6} \times \frac{1}{6} \times \frac{1}{6} \times \frac{1}{6}\right)\]

M1 for \(\frac{1}{2} \times \frac{1}{6}\) or \(\frac{1}{2} \times \frac{1}{6} \times \frac{1}{6}\) or \(\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}\)

A1 accept 0.583... rounded or truncated to 2 or more sf

Total 6 marks

Question 19

(a)

\[(v =) 18t - 3t^2\]

B2 for \(18t - 3t^2\) oe seen as final answer

B1 for \(18t\) or \(3t^2\) or \(-3t^2\)

Total 4 marks

(b)

\[(a =) 18 - 6t^2\]

M1 ft if differentiating correctly a quadratic with 2 or 3 terms

\[(t =) 3\]

A1 ft

Total 4 marks

Question 20

\[10 \times x = 3 \times 15 \quad \text{or} \quad (x =) 3 \times 15 \div 10\]

4.5 oe 2 marks

M1

A1

Total 2 marks
<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>21 (a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\frac{7}{x} \times \frac{6}{x+1} = 0.2)</td>
<td></td>
<td>M1 for (\frac{7}{x} - \frac{6}{x-1} = 0.2) or (\frac{7}{x} - \frac{6}{x-1} = \frac{1}{5})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(42 = 0.2x(x-1))</td>
<td>x^2 - x - 210 ((= 0))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(210 = x^2 - x)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A1* * answer given; sufficient steps must be seen to get to correct quadratic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b)</td>
<td>((x - 15)(x + 14) (= 0))</td>
<td></td>
<td>M2 for ((x + 15)(x + 14))</td>
<td>M1 (\frac{-(-1) \pm \sqrt{(-1)^2 - 4 \times 1 \times (-210)}}{2})</td>
<td>(may be partially evaluated, condone no brackets around negative numbers, accept (1^2))</td>
<td>M1 (indep) for (\sqrt{841}) or 29</td>
<td>M1 (indep) for (\sqrt{841}) or 29</td>
<td>A1 (dep on M2) for (-14, 15) or (15)</td>
<td>A1 (dep on M1) for (-14, 15) or (15)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>((\sqrt{a})^2 + (\sqrt{8a})^2 + 2\sqrt{a} \sqrt{8a})</td>
<td></td>
<td>M1 for correct expansion of brackets</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(a + 8a + 2a \sqrt{8})</td>
<td></td>
<td>A1 for (9a + 4a \sqrt{2})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(9a + 4a \sqrt{2})</td>
<td></td>
<td>A1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>23 (a) (i)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\frac{1}{2} y - x)</td>
<td>1</td>
<td>B1 (or \ -x + \frac{1}{2}y) oe eg (y - x - \frac{1}{2}y)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(ii)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(y - 2x)</td>
<td>1</td>
<td>B1 (or \ -2x + y) oe eg (x + y - 3x)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(OD) is parallel to (AM)</td>
<td>2</td>
<td>B1</td>
<td>both marks dependent on a(i) and a(ii) correct and simplified</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(OD) is twice length of (AM) oe</td>
<td></td>
<td>B1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 24 | $(FH^2 = 5^2 + 5^2 = 50)$
$\sqrt{50}$ or $5\sqrt{2}$ (= 7.07..)
\[\tan x = \frac{5}{\sqrt{50}} \]
M1 or correct Pythagoras statement to find any diagonal
A1 for $\sqrt{50}$ or $5\sqrt{2}$ or awrt 7.1
M1 dep on previous M1
\[\text{or } \sin x = \frac{5}{\sqrt{75}} \text{ or } \cos x = \frac{\sqrt{50}}{\sqrt{75}} \text{ or } \]
\[\text{correct statement using Sine or Cosine rule with angle } AHF \text{ as the only unknown} \]
(NB. $\sqrt{75}$ may be $5\sqrt{3}$ or awrt 8.7 may be used for AH if any other value used then it must clearly come from correct method to find AH)
A1 35.264... awrt 35.3
| 35.3 | 4 |
| Alternative scheme
$(AH^2 = 5^2 + 5^2 + 5^2 = 75)$
$\sqrt{75}$ or $5\sqrt{3}$ (= 8.66..)
\[\sin x = \frac{5}{\sqrt{75}} \]
M1
A1 for $\sqrt{75}$ or $5\sqrt{3}$ or awrt 8.7
M1 dep on previous M1
| 35.3 | 4 |
| A1 35.264... awrt 35.3 |
Total 4 marks

<table>
<thead>
<tr>
<th>25</th>
<th>$x^2 + (3 - 2x)^2 = 26$</th>
<th>M1 or $y^2 + \left(\frac{3 - y}{2}\right)^2 = 26$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$x^2 + 9 - 6x - 6x + 4x^2 = 26$ or $5x^2 - 12x + 9 = 26$</td>
<td>$y^2 + \left(\frac{9 - 6y + y^2}{4}\right) = 26$ or $y^2 + \left(\frac{9 - 3y - 3y + y^2}{4}\right) = 26$</td>
</tr>
<tr>
<td></td>
<td>M1 (indep) for correct expansion of $(3 - 2x)^2$ or $\left(\frac{3 - y}{2}\right)^2$ even if unsimplified</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$5x^2 - 12x - 17 = 0$</td>
<td>A1 $5y^2 - 6y - 95 = 0$</td>
</tr>
<tr>
<td></td>
<td>$(5x - 17)(x + 1) = 0$ or $\frac{-12 \pm \sqrt{(-12)^2 - 4 \times 5 \times (-17)}}{2 \times 5}$ (may be partially evaluated; condone lack of brackets around negative numbers) eg. $\frac{12 \pm \sqrt{144 + 340}}{10}$ or $\frac{12 \pm 22}{10}$</td>
<td>M1 $(5y + 19)(y - 5) = 0$ oe or $\frac{-6 \pm \sqrt{(-6)^2 - 4 \times 5 \times (-95)}}{2 \times 5}$ (may be partially evaluated; condone lack of brackets around negative numbers) eg. $\frac{6 \pm \sqrt{1936}}{10}$ or $\frac{6 \pm 44}{10}$</td>
</tr>
<tr>
<td></td>
<td>$x = 3.4$ oe , $x = -1$</td>
<td>A1 $y = 5$, $y = -3.8$ oe dep on all preceding marks</td>
</tr>
<tr>
<td></td>
<td>$x = 3.4$ oe , $x = -1$, $y = 5$, $y = -3.8$ oe</td>
<td>A1</td>
</tr>
<tr>
<td></td>
<td>NB. No marks for $x = -1$, $y = 5$ with no working</td>
<td></td>
</tr>
</tbody>
</table>

Total 6 marks