Mark Scheme (Results)

January 2013

International GCSE Mathematics A
(4MA0) Paper 3H

Level 1 / Level 2 Certificate in Mathematics
(KMA0) Paper 3H
Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world’s leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk for our BTEC qualifications. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

If you have any subject specific questions about this specification that require the help of a subject specialist, you can speak directly to the subject team at Pearson. Their contact details can be found on this link: www.edexcel.com/teachingservices.

You can also use our online Ask the Expert service at www.edexcel.com/ask. You will need an Edexcel username and password to access this service.

Pearson: helping people progress, everywhere
Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We’ve been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2013
Publications Code UG034739
All the material in this publication is copyright
© Pearson Education Ltd 2013
General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.

- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.

- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.

- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.

- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.

 Examiners should also be prepared to award zero marks if the candidate’s response is not worthy of credit according to the mark scheme.

- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.

- When examiners are in doubt regarding the application of the mark scheme to a candidate’s response, the team leader must be consulted.

- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

- Types of mark
 - M marks: method marks
 - A marks: accuracy marks
 - B marks: unconditional accuracy marks (independent of M marks)

- Abbreviations
 - cao – correct answer only
 - ft – follow through
 - isw – ignore subsequent working
 - SC - special case
 - oe – or equivalent (and appropriate)
 - dep – dependent
 - indep – independent
 - eooo – each error or omission

- No working
 - If no working is shown then correct answers normally score full marks
 - If no working is shown then incorrect (even though nearly correct) answers score no marks.
• **With working**

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.

If it is clear from the working that the “correct” answer has been obtained from incorrect working, award 0 marks.

Any case of suspected misread loses A (and B) marks on that part, but can gain the M marks.

If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.

If there is a choice of methods shown, then no marks should be awarded, unless the answer on the answer line makes clear the method that has been used.

If there is no answer on the answer line then check the working for an obvious answer.

• **Follow through marks**

Follow through marks which involve a single stage calculation can be awarded without working since you can check the answer yourself, but if ambiguous do not award.

Follow through marks which involve more than one stage of calculation can only be awarded on sight of the relevant working, even if it appears obvious that there is only one way you could get the answer given.

• **Ignoring subsequent work**

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.

It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.

Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

• **Parts of questions**

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another.
<table>
<thead>
<tr>
<th>Q</th>
<th>Working</th>
<th>Answer</th>
<th>Mark</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (a)</td>
<td>$1 - (0.18 + 0.2 + 0.23 + 0.22)$</td>
<td>0.17</td>
<td>2</td>
<td>M1 1 – 0.83</td>
</tr>
<tr>
<td>1. (b)</td>
<td>40×0.2</td>
<td>8</td>
<td>2</td>
<td>M1 8 out of 40 = M1A1 8/40 = M1A0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total 4 marks</td>
</tr>
<tr>
<td>2. (i)</td>
<td>$2x + 2(x+2) = 2 \times 2x + 2 \times 4x$ or $4x + 4 = 12x$ or $x + (x+2) = 2x + 4x$ or $2x + 2 = 6x$</td>
<td>2</td>
<td>B2 Must be an equation based on perimeter or semi-perimeter with x’s on both sides of equation</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>If not B2 then B1 for ${2x + 2(x+2)}$ or ${2x + 2 \times 4x}$ or ${4x + 4}$ or $12x$ i.e correct perimeter of A or B or ${x + (x+2)}$ or ${2x + 4}$ or ${2x + 2}$ or $6x$ i.e correct semi-perimeter of A or B</td>
</tr>
<tr>
<td>2. (ii)</td>
<td>$4x + 4 = 12x$ or $2x + 2 = 6x$ or $4 = 8x$ or $2 = 4x$</td>
<td>0.5</td>
<td>2</td>
<td>M1 One step from co</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total 4 marks</td>
</tr>
</tbody>
</table>
3. (a) 45/625 x 100

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3. (a)</td>
<td>45/625 x 100</td>
<td></td>
<td>7.2</td>
<td>M1 A1</td>
</tr>
</tbody>
</table>

3. (b) 8/100 x 45 (= 3.6)
45 + “3.6”

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>
| 3. (b) | 8/100 x 45 (= 3.6)
45 + “3.6” | | 48.6(0) | M1 M1 dep A1 or M2 for 45 x 1.08 |

3. (c) 640 – 625 (= 15)
“15” / 625 or “15” / 640

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>
| 3. (c) | 640 – 625 (= 15)
“15” / 625 or “15” / 640 | | 2.4 | M1 M1 dep A1 |

3. (d) 18 ÷ 1 1/3 or 18 ÷ 1.33 (2dp or better) or 18 ÷ 80 x 60

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3. (d)</td>
<td>18 ÷ 1 1/3 or 18 ÷ 1.33 (2dp or better) or 18 ÷ 80 x 60</td>
<td></td>
<td>13.5</td>
<td>M2 M1 for 1 1/3 or 18 ÷ 1.2 (=15) or 18 ÷ 1.3 (13.8..) or 18 ÷ 80 (=0.225) A1 cao</td>
</tr>
</tbody>
</table>

Total 11 marks

4. (a)

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. (a)</td>
<td></td>
<td>Q correct</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Total 5 marks

5. 2y = 6 or 4x = – 6

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total 3 marks
6. (a)
25 < \(d\) ≤ 30
B1 identifies 25 → 30 class

6. (b)
\[(12 \times 2.5) + (6 \times 7.5) + (4 \times 12.5) + (6 \times 17.5) + (14 \times 22.5) + (18 \times 27.5)\]
\[\text{totals: 30, 45, 50, 105, 315, 495}\]
M2 do not have to see intention to add

- If not M2 then M1 for freq x consistent interval value
 - (890 = freq x lower limit, 1190 = freq x upper limit)
- or 3 or more correct products stated or evaluated
- A1 isw if 1040 calculated correctly and correct mean calculation follows (1040 ÷ 60 = 17.3 or better)

7. (i)
\[-2 - 2 < x \text{ and } x \leq 5 - 2\]
\[-4 < x \leq 3\]
M1 condone omission/addition of “equals” in inequalities

- A1cao accept \(x > -4\) and \(x \leq 3\) (both present)

7. (ii)
\[-4\]
B2 ft ft for an inequality where range lies between – 5 and +5

- If not B2ft then B1ft for correct values but wrong shading of end circles

8. (a)
7.9 \(\cos 38^\circ\) or 7.9 \(\sin 52^\circ\)

- \(6.23\)
M2 M1 for \(\cos 38^\circ\) or \(\sin 52^\circ\) selected

- A1 awrt 6.2252..
8. (b)
(i) \(37.5\)

- B1

8. (b)(ii)
38.5 or 38.49 rec

- B1

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total 4 marks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total 4 marks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total 5 marks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>9. (a)</td>
<td>Mars 1</td>
<td>B1</td>
<td></td>
</tr>
<tr>
<td>9. (b)</td>
<td>$1.2 \times 10^3 - 5.0 \times 10^4$ or 70000</td>
<td>7 x 10^4</td>
<td>2</td>
</tr>
<tr>
<td>9. (c)</td>
<td>$(1.4 \times 10^5) \div (3.5 \times 10^3)$</td>
<td>1:400 oe</td>
<td>2</td>
</tr>
<tr>
<td>Total 5 marks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. (a)</td>
<td>Correct $v \div h$</td>
<td>1.5 oe</td>
<td>2</td>
</tr>
<tr>
<td>10. (b)</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>10. (c)</td>
<td>$y = “1.5”x - 1$ oe or “1.5”x + 3 or $0 = -2x$ gradient from (a) + c</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Total 5 marks</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 11. | $2.1 - 1.7 (= 0.4)$
$6^2 + “0.4”^2 (= 36.16)$
$\sqrt{“36.16”}$ | 6.01 | 4 | M1 M1 dep M1 dep A1 awrt 6.01 N.B. Accept working in cms throughout for method marks |
| **Total 4 marks** | | | | |
Question 12

\[
\frac{\pi}{2} = r + h \quad \text{or} \quad A = 2\pi r^2 + 2\pi rh
\]

\[
\frac{\pi}{2} - r = h \quad \text{oe}
\]

Correct first step

A1 e.g. \(\frac{\pi}{2} = 2\pi r^2 + 2\pi rh\)

Give full credit to equivalent correct expressions

Total 2 marks

Question 13

(i) 5 x 8

\[
5 \times 8 = 40
\]

M1 Or any correct id marked on vertical axis (2, 4 etc) with no errors

or 1 square = 4 students

A1

Total 2 marks

(ii) Missing blocks = 5cm, 6cm, 1.5cm

2

B2 3 correct blocks

If not B2 then B1 for 1 or 2 correct blocks

Total 4 marks

Question 14

(a) Black circle = 0.3 White region = 0.6

All values “correct” for second shot

3

B1 B1

B1 ft Allow ft if each group of 3 branches on second arrow all sum to 1 and are consistent with first arrow branches

(b) Any one correct product in numerical form

e.g. (“0.3” x 0.1) or

(0.1 x “0.3”) or (“0.6” x “0.6”)

(“0.3”x 0.1) + (0.1x “0.3”) + (“0.6” x “0.6”)

0.42oe

M1 ft e.g. (Black, Miss) or (Miss, Black) or (White, White)

3 “correct” products with intention to add

A1 cao

Total 6 marks
Question 15

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>15. (i)</td>
<td>18</td>
<td>B1</td>
<td></td>
</tr>
<tr>
<td>15. (ii)</td>
<td>15</td>
<td>B1</td>
<td></td>
</tr>
<tr>
<td>15. (iii)</td>
<td>9</td>
<td>B1</td>
<td></td>
</tr>
<tr>
<td>15. (iv)</td>
<td>22</td>
<td>B1</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Question 16

\[
7^2 = 9^2 + 13^2 - 2 \times 9 \times 13 \cos x \quad \text{oe}
\]

\[
234 \cos x = 201
\]

\[30.8 \quad 3 \quad \text{M1 M1 or } \cos x = 0.86 \text{ or better}
\]

\[30.798... \quad \text{awrt } 30.8 \quad \text{A1}
\]

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Question 17

\[
\frac{(2x - 5)(2x + 5)}{(2x + 5)(3x - 1)} = \frac{(2x - 5)}{(3x - 1)}
\]

\[3 \quad \text{M2 If not M2 then M1 for numerator or denominator correct}
\]

\[\text{A1} \quad \text{awrt isolated}
\]

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Question 18

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>18. (a) (i)</td>
<td>16x</td>
<td>B1</td>
<td></td>
</tr>
<tr>
<td>18. (a) (ii)</td>
<td>2x^{-1}</td>
<td>-2x^{-2} \quad \text {oe}</td>
<td>2</td>
</tr>
<tr>
<td>18. (b)</td>
<td>“16x” + “- 2/x^2” = 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16x = 2/x^2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x^3 = 1/8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x = \frac{1}{2}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\frac{1}{2}, 6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Detailed Solutions

16. **Calculation:**

\[
7^2 = 9^2 + 13^2 - 2 \times 9 \times 13 \cos x \quad \text{oe}
\]

\[
234 \cos x = 201
\]

Result:

\[
\cos x = 0.86 \quad \text{awrt } 30.8
\]

17. **Calculation:**

\[
\frac{(2x - 5)(2x + 5)}{(2x + 5)(3x - 1)} = \frac{(2x - 5)}{(3x - 1)}
\]

Result:

\[
\text{If not M2 then M1 for numerator or denominator correct}
\]

18. **Calculation:**

\[
16x = 2/x^2
\]

\[
x^3 = 1/8
\]

\[
x = \frac{1}{2}
\]

Result:

\[
(\frac{1}{2}, 6)
\]
19. (a) \(2 \times 3 \times x \times x = (x + 10)(3x + 20)\) or \(6x^2 = (x + 10)(3x + 20)\)
\[6x^2 = 3x^2 + 50x + 200\]

3
A1 Dependent on at least M1

19. (b) \((3x + 10)(x - 20) (= 0)\)
Marks can be awarded in b) if seen in a)

<table>
<thead>
<tr>
<th>(20 \times 3 \times 20)</th>
<th>(x = 20)</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1200</td>
<td></td>
</tr>
</tbody>
</table>

M2 If not M2 then M1 for \(2 \times 3 \times x \times x\) or \(2 \times 3x^2\) or \(6x^2\) or \((x + 10)(3x + 20)\)

or \(x = \frac{-10 \pm \sqrt{100 - 4 \times 2 \times 20}}{2 \times 3}\) condone 1 sign error

A1 dep on M1 in b). Ignore negative root (–3.3 rec)

Total 8 marks
<table>
<thead>
<tr>
<th>20.</th>
<th>2a oe</th>
<th>1</th>
<th>B1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) (i)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.</td>
<td>2a + b oe</td>
<td>1</td>
<td>B1</td>
</tr>
<tr>
<td>(a) (ii)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.</td>
<td>– a + b oe</td>
<td>1</td>
<td>B1</td>
</tr>
<tr>
<td>(a) (iii)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.</td>
<td>PN = (a + \frac{1}{3}(−a + b)) (\overleftrightarrow{PN} = 2a/3 + b/3 {= 1/3 (2a + b)})</td>
<td>2</td>
<td>M1 ft from (a)(iii) i.e. a valid path from P to N, or N to P, using lower case letters. A1 Arrows not necessary. Dependent on M1</td>
</tr>
<tr>
<td>(b)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.</td>
<td>NR = (2/3 (−a + b) + 2a) (\overleftrightarrow{NR} = 4a/3 + 2b/3 {= 2/3 (2a + b)})</td>
<td>2</td>
<td>M1 ft from (a)(iii) i.e. a valid path from N to R, or R to N, using lower case letters. A1 Arrows not necessary. Dependent on M1</td>
</tr>
<tr>
<td></td>
<td>stating (PN = PR/3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>stating (NR = 2PR/3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total 5 marks</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
21. \(\sqrt{16^2 + 10^2} \) (=18.9 or better)
“18.867” ÷ 2 (=9.433)
tan “\(x \)” = 15/“9.433”

M1 or M2 for \(\sqrt{8^2 + 5^2} \) (=9.43 or better)
M1 dep on previous M1
M1 dep on M2
A1 57.832….. awrt 57.8

TOTAL = 100 marks