Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Without sufficient working, correct answers may be awarded no marks.
- Answer the questions in the spaces provided
 - *there may be more space than you need.*
- **Calculators may be used.**
- You must **NOT** write anything on the formulae page.
 Anything you write on the formulae page will gain NO credit.

Information

- The total mark for this paper is 100.
- The marks for each question are shown in brackets
 - *use this as a guide as to how much time to spend on each question.*

Advice

- Read each question carefully before you start to answer it.
- Check your answers if you have time at the end.
International GCSE MATHEMATICS
FORMULAE SHEET – HIGHER TIER

Pythagoras' Theorem

\[a^2 + b^2 = c^2 \]

Volume of cone = \(\frac{1}{3} \pi r^2 h \)

Curved surface area of cone = \(\pi rl \)

Volume of sphere = \(\frac{4}{3} \pi r^3 \)

Surface area of sphere = \(4 \pi r^2 \)

In any triangle \(ABC \)

- \(\sin \theta = \frac{\text{opp}}{\text{hyp}} \)
- \(\cos \theta = \frac{\text{adj}}{\text{hyp}} \)
- \(\tan \theta = \frac{\text{opp}}{\text{adj}} \)

Sine rule:
\[
\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}
\]

Cosine rule:
\[a^2 = b^2 + c^2 - 2bc \cos A \]

Area of triangle = \(\frac{1}{2} ab \sin C \)

Volume of prism = area of cross section \(\times \) length

Circumference of circle = \(2 \pi r \)

Area of circle = \(\pi r^2 \)

Volume of cylinder = \(\pi r^2 h \)

Curved surface area of cylinder = \(2 \pi rh \)

The Quadratic Equation

The solutions of \(ax^2 + bx + c = 0 \), where \(a \neq 0 \), are given by

\[
x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
\]
A box contains some coloured cards.
Each card is red or blue or yellow or green.
The table shows the probability of taking a red card or a blue card or a yellow card.

<table>
<thead>
<tr>
<th>Card</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>0.3</td>
</tr>
<tr>
<td>Blue</td>
<td>0.35</td>
</tr>
<tr>
<td>Yellow</td>
<td>0.15</td>
</tr>
<tr>
<td>Green</td>
<td></td>
</tr>
</tbody>
</table>

George takes at random a card from the box.

(a) Work out the probability that George takes a green card.

..
(2)

George replaces his card in the box.
Anish takes a card from the box and then replaces the card.
Anish does this 40 times.

(b) Work out an estimate for the number of times Anish takes a yellow card.

..
(2)

(Total for Question 1 is 4 marks)
2 Wendy travelled on the Eurostar train from St Pancras station to the Gare du Nord station. The Eurostar train travelled a distance of 495 km. The journey time was 2 hours 15 minutes.

Work out the average speed of the Eurostar train in kilometres per hour.

\[
\text{Average speed} = \frac{\text{Distance}}{\text{Time}} = \frac{495 \text{ km}}{2 \text{ hours } 15 \text{ minutes}} = \frac{495 \text{ km}}{2.25 \text{ hours}}
\]

\[
\text{Average speed} = 219.33 \text{ km/h}
\]

(Total for Question 2 is 3 marks)

3 The table shows information about the time, in minutes, spent on homework by each of 32 pupils in one night.

<table>
<thead>
<tr>
<th>Time (t minutes)</th>
<th>Number of pupils</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 < t < 20</td>
<td>7</td>
</tr>
<tr>
<td>20 < t < 40</td>
<td>16</td>
</tr>
<tr>
<td>40 < t < 60</td>
<td>3</td>
</tr>
<tr>
<td>60 < t < 80</td>
<td>6</td>
</tr>
</tbody>
</table>

(a) Calculate the percentage of the 32 pupils who spent more than 60 minutes on their homework.

\[
\text{Percentage} = \left(\frac{6 + 3}{32} \right) \times 100 = \left(\frac{9}{32} \right) \times 100 = 28.125\%
\]

(b) Calculate an estimate for the total time spent on homework by the 32 pupils.

\[
\text{Total time} = (7 \times 20) + (16 \times 40) + (3 \times 60) + (6 \times 80) = 140 + 640 + 180 + 480 = 1440 \text{ minutes}
\]

(Total for Question 3 is 5 marks)
4 (a) Expand \(6(3a - 2b + c) \)

(b) Factorise \(t^2 - 10t \)

(c) Solve \(x = \frac{7 - 2x}{3} \)

Show clear algebraic working.

\[x = \ldots \]

(Total for Question 4 is 6 marks)

5 Show that \(\frac{4}{9} - \frac{1}{6} = \frac{5}{18} \)

(Total for Question 5 is 2 marks)
(a) Describe fully the single transformation that maps shape P onto shape Q.

(b) On the grid, rotate shape Q 180° about the point (6, 2).
Label the new shape R.

(Total for Question 6 is 5 marks)
7 \[M = 3x^2 - nx \]

(a) Work out the value of \(M \) when
\[x = -2 \text{ and } n = 5 \]

\[M = \]
\[.. \]
(2)

(b) Work out the value of \(n \) when
\[M = 12 \text{ and } x = 4 \]

\[n = \]
\[.. \]
(3)

(Total for Question 7 is 5 marks)

Do NOT write in this space.
8 (a) \(A = \{s, u, p, e, r\} \)
\(B = \{c, o, m, p, u, t, e, r\} \)

List the members of the set
(i) \(A \cap B \)
..
(ii) \(A \cup B \)
.. (2)

(b) \(X = \{\text{prime numbers}\} \)
\(Y = \{\text{factors of 12}\} \)

Is it true that \(X \cap Y = \emptyset \)?

Tick (✓) the appropriate box.

Yes No

Explain your answer.
..

(Total for Question 8 is 3 marks)

9 (a) Simplify, leaving your answers in index form,
(i) \(6^5 \times 6^2 \times 6 \)
..
(ii) \((9^7)^2 \)
.. (2)

(b) \(\frac{5^n \times 5^3}{5^6} = 5^4 \)

Find the value of \(n \).

\(n = \) .. (2)

(Total for Question 9 is 4 marks)
The diagram shows the path of an athlete on a running track.

The path consists of two straight lengths and a semicircle at each end.
Each straight length is 85 metres.
Each semicircle has a radius of 36.6 metres.

Calculate the area enclosed by the path.
Give your answer correct to 3 significant figures.

.. m²

(Total for Question 10 is 4 marks)
11 Calculate the value of x.
Give your answer correct to 3 significant figures.

$$x = \ldots$$

(Total for Question 11 is 3 marks)

12 (a) Write as an ordinary number

(i) 4.2×10^6

(ii) 3.82×10^{-4}

(b) Here are three numbers written in standard form.
Arrange these numbers in order of size. Start with the smallest number.

$$5.6 \times 10^{-7} \quad 8.6 \times 10^{-9} \quad 5.64 \times 10^{-8}$$

(Total for Question 12 is 4 marks)
The points with coordinates (0, 3) and (8, 5) lie on the straight line L.

(a) Work out the gradient of L.

(b) Write down an equation of L.

(c) Find an equation of the line which is parallel to L and which passes through the point $(-4, -2)$.

(Total for Question 13 is 5 marks)
14 Triangles ABC and ACD are similar.

Angle $BAC = \text{angle } CAD$.
Angle $ABC = \text{angle } ACD$.
$AB = 5\text{ cm}$ and $AC = 8\text{ cm}$.

(a) Calculate the length of AD.

\[..........................\text{ cm}\]

(2)

The area of triangle ABC is 12 cm^2

(b) Calculate the area of triangle ACD.

\[..........................\text{ cm}^2\]

(2)

(Total for Question 14 is 4 marks)
15 The table shows information about the times, in minutes, that some people took to complete a sudoku puzzle.

<table>
<thead>
<tr>
<th>Time (t minutes)</th>
<th>0 < t ≤ 5</th>
<th>5 < t ≤ 20</th>
<th>20 < t ≤ 30</th>
<th>30 < t ≤ 50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of people</td>
<td>4</td>
<td>18</td>
<td>34</td>
<td>30</td>
</tr>
</tbody>
</table>

Complete the histogram for this information.

(Total for Question 15 is 3 marks)
Glass A contains 122 millilitres of water, correct to the nearest millilitre. Glass B contains 168 millilitres of water, correct to the nearest millilitre.

Calculate the upper bound of the difference, in millilitres, between the volume of water in glass A and the volume of water in glass B.

.. millilitres

(Total for Question 16 is 2 marks)

17 Make n the subject of the formula

\[t = \sqrt{\frac{n + 3}{n}} \]

..

\[n = \]

(Total for Question 17 is 4 marks)
Boris and Nigel play games of chess against each other in a match. In each game, Boris wins or Nigel wins or the game is a draw.

When a player wins a game, he wins the match. When a game is a draw, the players play another game against each other. Boris and Nigel play a maximum of 3 games.

The probability that Boris wins a game is \(\frac{1}{3} \)

The probability that a game is a draw is \(\frac{1}{2} \)

(a) Complete the probability tree diagram.

(b) Calculate the probability that Boris wins the match.
19 A particle is moving in a straight line which passes through a fixed point \(O \).
The displacement, \(s \) metres, of the particle from \(O \) at time \(t \) seconds is given by
\[
s = 10 + 9t^2 - t^3
\]
(a) Find an expression for the velocity, \(v \) m/s, of the particle at time \(t \) seconds.

\[
v = \frac{ds}{dt} = 18t - 3t^2
\]

(2)

(b) Find the time at which the acceleration of the particle is zero.

\[
\frac{dv}{dt} = 18 - 6t = 0 \Rightarrow t = 3
\]

(2)

(Total for Question 19 is 4 marks)

20 \(PTR \) and \(QTS \) are chords of a circle.

\(PT = 3 \) cm.
\(ST = 10 \) cm.
\(RT = 15 \) cm.
\(QT = x \) cm.

Diagram NOT accurately drawn

Calculate the value of \(x \).

\[
x = \sqrt{10^2 + 15^2} - 3 = \sqrt{225 + 100} - 3 = \sqrt{325} - 3
\]

(2)

(Total for Question 20 is 2 marks)
21 A bag contains x counters.
 7 of the counters are blue.
 Sam takes at random a counter from the bag and does not replace it.
 Jill then takes a counter from the bag.
 The probability they both take a blue counter is 0.2

(a) Form an equation involving x.
 Show that your equation can be expressed as $x^2 - x - 210 = 0$

(b) Solve $x^2 - x - 210 = 0$
 Show clear algebraic working.

22 $(\sqrt{a} + \sqrt{8a})^2 = 54 + b\sqrt{2}$
 a and b are positive integers.
 Find the value of a and the value of b.
 Show your working clearly.

 $a =$..
 $b =$..

(Total for Question 21 is 5 marks)

(Total for Question 22 is 3 marks)
$OABC$ is a parallelogram.
BCD is a straight line.
$BD = 3BC$.
M is the midpoint of OC.
\[\overrightarrow{OA} = x \quad \overrightarrow{AB} = y \]

(a) Find, in terms of x and y,

(i) \overrightarrow{AM}

(ii) \overrightarrow{OD}

(b) Use your answers to (a)(i) and (ii) to write down two different geometric facts about the lines AM and OD.

(Total for Question 23 is 4 marks)
The diagram shows a cube $ABCDEFGH$. The sides of the cube are of length 5 cm.

Calculate the size of the angle between the diagonal AH and the base $EFGH$. Give your answer correct to 1 decimal place.

(Total for Question 24 is 4 marks)
25 Solve the simultaneous equations

\[x^2 + y^2 = 26\]
\[y = 3 - 2x\]

Show clear algebraic working.

(Total for Question 25 is 6 marks)