Mark Scheme (Results)

Summer 2013

GCSE Mathematics (Linear) 1MA0 Higher (Non-Calculator) Paper 1H
Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world’s leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk for our BTEC qualifications. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

If you have any subject specific questions about this specification that require the help of a subject specialist, you can speak directly to the subject team at Pearson. Their contact details can be found on this link: www.edexcel.com/teachingservices.

You can also use our online Ask the Expert service at www.edexcel.com/ask. You will need an Edexcel username and password to access this service.

Pearson: helping people progress, everywhere
Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We’ve been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2013
Publications Code UG037223
All the material in this publication is copyright
© Pearson Education Ltd 2013
NOTES ON MARKING PRINCIPLES

1. All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.

2. Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.

3. All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate’s response is not worthy of credit according to the mark scheme.

4. Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.

5. Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

6. Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:

 i) **ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear**
 Comprehension and meaning is clear by using correct notation and labeling conventions.

 ii) **select and use a form and style of writing appropriate to purpose and to complex subject matter**
 Reasoning, explanation or argument is correct and appropriately structured to convey mathematical reasoning.

 iii) **organise information clearly and coherently, using specialist vocabulary when appropriate.**
 The mathematical methods and processes used are coherently and clearly organised and the appropriate mathematical vocabulary used.
7 With working
If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.
If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.
If it is clear from the working that the “correct” answer has been obtained from incorrect working, award 0 marks. Send the response to review, and discuss each of these situations with your Team Leader.
If there is no answer on the answer line then check the working for an obvious answer.
Any case of suspected misread loses A (and B) marks on that part, but can gain the M marks. Discuss each of these situations with your Team Leader.
If there is a choice of methods shown, then no marks should be awarded, unless the answer on the answer line makes clear the method that has been used.

8 Follow through marks
Follow through marks which involve a single stage calculation can be awarded without working since you can check the answer yourself, but if ambiguous do not award.
Follow through marks which involve more than one stage of calculation can only be awarded on sight of the relevant working, even if it appears obvious that there is only one way you could get the answer given.

9 Ignoring subsequent work
It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: e.g. incorrect canceling of a fraction that would otherwise be correct.
It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect e.g. algebra.
Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

10 Probability
Probability answers must be given a fractions, percentages or decimals. If a candidate gives a decimal equivalent to a probability, this should be written to at least 2 decimal places (unless tenths).
Incorrect notation should lose the accuracy marks, but be awarded any implied method marks.
If a probability answer is given on the answer line using both incorrect and correct notation, award the marks.
If a probability fraction is given then cancelled incorrectly, ignore the incorrectly cancelled answer.
11 **Linear equations**
Full marks can be gained if the solution alone is given on the answer line, or otherwise unambiguously indicated in working (without contradiction elsewhere). Where the correct solution only is shown substituted, but not identified as the solution, the accuracy mark is lost but any method marks can be awarded.

12 **Parts of questions**
Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another.

13 **Range of answers**
Unless otherwise stated, when an answer is given as a range (e.g. 3.5 – 4.2) then this is inclusive of the end points (e.g. 3.5, 4.2) and includes all numbers within the range (e.g. 4, 4.1)

Guidance on the use of codes within this mark scheme

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>method mark</td>
</tr>
<tr>
<td>A1</td>
<td>accuracy mark</td>
</tr>
<tr>
<td>B1</td>
<td>Working mark</td>
</tr>
<tr>
<td>C1</td>
<td>communication mark</td>
</tr>
<tr>
<td>QWC</td>
<td>quality of written communication</td>
</tr>
<tr>
<td>oe</td>
<td>or equivalent</td>
</tr>
<tr>
<td>cao</td>
<td>correct answer only</td>
</tr>
<tr>
<td>ft</td>
<td>follow through</td>
</tr>
<tr>
<td>sc</td>
<td>special case</td>
</tr>
<tr>
<td>dep</td>
<td>dependent (on a previous mark or conclusion)</td>
</tr>
<tr>
<td>indep</td>
<td>independent</td>
</tr>
<tr>
<td>isw</td>
<td>ignore subsequent working</td>
</tr>
<tr>
<td>Question</td>
<td>Working</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>1</td>
<td>(a)</td>
</tr>
<tr>
<td></td>
<td>(b)</td>
</tr>
</tbody>
</table>
| 2 | | 24 | 4 | M1 for $0.15 \times 240 \ (= 36) \ oe$
| | | | | M1 for $\frac{3}{4} \times 240 \ (= 180) \ oe$
| | | | | M1 (dep on both prev M1) for $240 - "180" - "36" \ A1 \ cao$
| | | | | M1 for $15(\%) + 75(\%) \ (= 90(\%))$
| | | | | M1 for $100(\%) - "90(\%)" \ (= 10(\%))$
| | | | | M1 (dep on both prev M1) for $\frac{10}{100} \times 240 \ oe$
| | | | | M1 for 0.15 + 0.75(= 0.9) oe
| | | | | M1 for “0.9” × 240(= 216) oe
| | | | | M1 (dep on both prev M1) for 240 □ “216”
| | | | | M1 for 0.15 + 0.75(= 0.9) oe
| | | | | M1 for 1 – “0.9”(= 0.1) oe
| | | | | M1 (dep on both prev M1) for “0.1” × 240 oe
<p>| | | | | A1 cao|
| | | | | A1 cao|</p>
<table>
<thead>
<tr>
<th>Question</th>
<th>Working</th>
<th>Answer</th>
<th>Mark</th>
<th>Notes</th>
</tr>
</thead>
</table>
| 3 | | 2|478
3|0335788
4|112445
Key,eg
4|1 is 4.1(kg) | 3 | B2 for correct ordered stem and leaf
(B1 for fully correct unordered or ordered with one error or omission)
B1 (indep) for key (units not required) |
| 4 | (a) | 6 + 3t | 1 | B1 for 6 + 3t |
| | (b) | 6x^2 + 15x | 2 | B2 for 6x^2 + 15x
(B1 for 6x^2 or 15x) |
| | (c) | m^2 + 10m + 3m + 30 | 2 | M1 for all 4 terms (and no additional terms) correct with or without signs or 3 out of no more than four terms correct with signs
A1 for m^2 + 13m + 30 |
| 5 | 5|525
5|105
3|21
7 | 3 × 5 × 5 × 7 | 3 | M1 for continual prime factorisation (at least first 2 steps correct) or first two stages of a factor tree correct
M1 for fully correct factor tree or list 3, 5, 5, 7
A1 3 × 5 × 5 × 7 or 3 × 5^2 × 7 |
<table>
<thead>
<tr>
<th>Question</th>
<th>Working</th>
<th>Answer</th>
<th>Mark</th>
<th>Notes</th>
</tr>
</thead>
</table>
| 6 | | 7 | 3 | M1 for 4×10 or $\frac{12+6+15+x}{4}$ or a correct equation
M1 for a complete and correct method
A1 cao |
| 7 | (a) | (4,0) (3, 0) (3, -1) (2, -1) (2, 2) (4, 2) | Correct position | 2 | B2 for correct shape in correct position
(B1 for any incorrect translation of correct shape) |
| | (b) | Rotation
180°
(0,1) | | 3 | B1 for rotation
B1 for 180° (ignore direction)
B1 for (0, 1) |
| | | OR | | |
| | | B1 for enlargement
B1 for scale factor -1
B1 for (0, 1) | | |
<p>| | | (NB: a combination of transformations gets B0) | | |</p>
<table>
<thead>
<tr>
<th>Question</th>
<th>Working</th>
<th>Answer</th>
<th>Mark</th>
<th>Notes</th>
</tr>
</thead>
</table>
| 8 | \(\frac{20 \times 300}{0.5} \) | 12000 | 3 | B1 for 20 or 300 used
M1 for “20” × “300” or \(\frac{20}{0.5} \) or \(\frac{300}{0.5} \), values do not need to be rounded
A1 for answer in the range 11200 –13200
SC B3 for 12000 with or without working |
| 9 | LCM (80, 50) = 400
Matt 400 ÷ 50 = 8
Dan 400 ÷ 80 = 5
OR
50 = 2 × 5 \((× 5)\)
80 = 2 × 5 \((× 2 × 2 \times 2)\) | Matt 8
Dan 5 | 3 | M1 lists multiples of both 80 (seconds) and 50 (seconds)
(at least 3 of each but condone errors if intention is clear, can be in minutes and seconds) or use of 400 seconds oe.
M1 (dep on M1) for a division of "LCM" by 80 or 50 or counts up “multiples”
(implied if one answer is correct or answers reversed)
A1 Matt 8 and Dan 5
SC B1 for Matt 7, Dan 4
OR
M1 for expansion of both 80 and 50 into prime factors.
M1 demonstrates that both expansions include 10 oe
A1 Matt 8 and Dan 5
SC B1 for Matt 7, Dan 4 |
<table>
<thead>
<tr>
<th>Question</th>
<th>Working</th>
<th>Answer</th>
<th>Mark</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td></td>
<td>1.5</td>
<td>4</td>
<td>M1 for correct expression for perimeter
eg. $4 + 3x + x + 6 + 4 + 3x + x + 6$ oe
M1 for forming a correct equation
eg. $4 + 3x + x + 6 + 4 + 3x + x + 6 = 32$ oe
M1 for $8x = 12$ or $12 ÷ 8$
A1 for 1.5 oe
OR
M1 for correct expression for semi-perimeter
eg. $4 + 3x + x + 6$ oe
M1 for forming a correct equation
eg. $4 + 3x + x + 6 = 16$ oe
M1 for $4x = 6$ or $6 ÷ 4$
A1 for 1.5 oe</td>
</tr>
<tr>
<td>Question</td>
<td>Working</td>
<td>Answer</td>
<td>Mark</td>
<td>Notes</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>--------</td>
<td>------</td>
<td>-------</td>
</tr>
</tbody>
</table>
| *11 QWC | \(\frac{30}{24} \times 60 = 75 \) | Debbie + explanation | 4 | M1 for reading 24 (mins) and 30 (km) or a pair of other values for Debbie
A1 for 74 – 76 or for 1.2 – 1.3 and 1.1
C1 (dep on M2) for correct conclusion, eg Debbie is fastest from comparison of “74 – 76” with 66 (kph) or “1.2 – 1.3” and 1.1 (km per minute)
OR
M1 for using an appropriate pair of values for Ian’s speed eg 66 and 60, 33 and 30, 11 and 10
A1 for correct line drawn
C1 (dep on M2) for Debbie is fastest from comparison of gradients.
OR
M1 for reading 24 (mins) and 30 (km) or a pair other values for Debbie
A1 for a pair of comparable values.
C1 (dep on M2) for Debbie is fastest from comparison of comparable values. |
<table>
<thead>
<tr>
<th>Question</th>
<th>Working</th>
<th>Answer</th>
<th>Mark</th>
<th>Notes</th>
</tr>
</thead>
</table>
| 12 | $x - 2$ -1 0 1 2 3 4
| | y 4 4.5 5 5.5 6 6.5 7 | $y = \frac{1}{2}x + 5$ drawn | 3 | *(Table of values/calculation of values)*
| | | | | M1 for at least 2 correct attempts to find points by substituting values of x.
| | | | | M1 ft for plotting at least 2 of their points (any points plotted from their table must be plotted correctly)
| | | | | A1 for correct line between $x = -2$ and $x = 4$
| | | | | *(No table of values)*
| | | | | M1 for at least 2 correct points with no more than 2 incorrect points
| | | | | M1 for at least 2 correct points (and no incorrect points) plotted OR line segment of $y = \frac{1}{2}x + 5$ drawn
| | | | | A1 for correct line between $x = -2$ and $x = 4$
| | | | | *(Use of $y=mx+c$)*
| | | | | M1 for line drawn with gradient 0.5 OR line drawn with y intercept at 5
| | | | | M1 for line drawn with gradient 0.5 AND line drawn with y intercept at 5
| | | | | A1 For correct line between $x = -2$ and $x = 4$
| | | | | SC B2 for a correct line from $x = 0$ to $x = 4$

| 13 | Yes with explanation | 3 | M1 for bearing $\pm 2^\circ$ within overlay
| | | | M1 for use of scale to show arc within overlay or line drawn from C to ship’s course with measurement
| | | | C1(dep M1) for comparison leading to a suitable conclusion from a correct method

QWC

SC
<table>
<thead>
<tr>
<th>Question</th>
<th>Working</th>
<th>Answer</th>
<th>Mark</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>(a) Line joins an empty circle at -2 to a solid circle at 3</td>
<td>diagram</td>
<td>2</td>
<td>B2 cao (B1 for line from -2 to 3)</td>
</tr>
<tr>
<td></td>
<td>(b) $2x \geq 7$</td>
<td>$x \geq 3.5$</td>
<td>2</td>
<td>M1 for correct method to isolate variable and number terms (condone use of $=, >, \leq, \text{or } <$) or $(x =) 3.5$ A1 for $x \geq 3.5$ oe as final answer</td>
</tr>
<tr>
<td>*Q15 QWC</td>
<td></td>
<td>No + explanation</td>
<td>3</td>
<td>M1 for $500 \times 9 \times 10^{-3}$ oe A1 for 4.5 C1 (dep M1) for correct decision based on comparison of their paper height with 4 OR M1 for $4 \div 500$ oe A1 for 0.008 C1 (dep M1) for correct decision based on comparison of their paper thickness with 0.009 OR M1 for $4 \div (9 \times 10^{-3})$ oe A1 for 444(4...) C1 (dep M1) for correct decision based on comparison of their number of sheets of paper with 500</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>£500</td>
<td>3</td>
<td>M1 for $70% = 350 \text{ or } \frac{350}{70}$ M1 for $\frac{350}{70} \times 100$ oe A1 cao</td>
</tr>
<tr>
<td>Question</td>
<td>Working</td>
<td>Answer</td>
<td>Mark</td>
<td>Notes</td>
</tr>
<tr>
<td>----------</td>
<td>---------------</td>
<td>---------</td>
<td>------</td>
<td>-------</td>
</tr>
</tbody>
</table>
| 17 | 1 hour 45 mins | 6 | M1 for method to find volume of pond,
| | | | eg $\frac{1}{2} \times (1.3 + 0.5) \times 2 \times 1 = 1.8$ | |
| | | | M1 for method to find the volume of water emptied in 30 minutes, eg $1 \times 2 \times 0.2 = 0.4$, $100 \times 200 \times 20 = 400000$ | |
| | | | A1 for correct rate, eg 0.8 m³/hr, 0.4 m³ in 30 minutes | |
| | | | M1 for correct method to find total time taken to empty the pond,
| | | | eg $\frac{1.8}{0.8}$ | |
| | | | M1 for method to find extra time,
| | | | eg 2 hrs 15 minutes − 30 minutes | |
| | | | A1 for 1.75 hours, $1\frac{3}{4}$ hours, 1 hour 45 mins or 105 mins | |
| | | | **OR** | |
| | | | M1 for method to find volume of water emptied in 30 minutes, eg. $1 \times 2 \times 0.2 = 0.4$, $100 \times 200 \times 20 = 400000$ | |
| | | | M1 for method to work out rate of water loss
| | | | eg. 0.4×2 | |
| | | | A1 for correct rate, eg 0.8 m³/hr | |
| | | | M1 for correct method to work out remaining volume of water
<p>| | | | eg $\frac{1}{2} \times (1.1 + 0.3) \times 2 \times 1 = 1.4$ | |
| | | | M1 for method to work out time, eg “1.4” ÷ “0.8” | |
| | | | A1 for 1.75 hours, $1\frac{3}{4}$ hours, 1 hour 45 mins or 105 mins | |
| | | | nb working could be in 3D or in 2D and in metres or cm throughout | |</p>
<table>
<thead>
<tr>
<th>Question</th>
<th>Working</th>
<th>Answer</th>
<th>Mark</th>
<th>Notes</th>
</tr>
</thead>
</table>
| 18 | $12x + 21y = 3$
 | $12x + 40y = 60$
 | $19y = 57$
 | $y = 3$
 | $3x + 10 \times 3 = 15$
 | $3x = -15$
 | $x = -5, y = 3$
 | 4 | M1 for a correct process to eliminate either x or y or rearrangement of one equation leading to substitution (condone one arithmetic error)
 | A1 for either $x = -5$ or $y = 3$
 | M1 (dep) for correct substitution of their found value
 | A1 cao |
| 19 | $-5, 0.2, 0.5, 1$
 | $-5, 5^{-1}, 0.5, 5^0$
 | 2 | M1 for either 5^{-1} or 5^0 evaluated correctly
 | A1 for a fully correct list from correct working, accept original numbers or evaluated
<pre><code> | (SC B1 for one error in position or correct list in reverse order) |
</code></pre>
<table>
<thead>
<tr>
<th>Question</th>
<th>Working</th>
<th>Answer</th>
<th>Mark</th>
<th>Notes</th>
</tr>
</thead>
</table>
| 20 | | $5x^2$ | 4 | M1 for $4x \times 4x$
M1 for $(2x \times 4x)/2$ or $(2x \times x)/2$ or $(3x \times 4x)/2$
M1(dep M2) for “$16x^2$” – “$4x^2$” – “x^2” – “$6x^2$”
A1 for $5x^2$
OR
M1 for $\sqrt{(2x)^2 + (4x)^2} = \sqrt{20x^2} = \sqrt{20}x$
M1 for $\sqrt{(x)^2 + (2x)^2} = \sqrt{5x^2} = \sqrt{5}x$
M1(dep M2) for $\frac{\sqrt{5x^2} \times \sqrt{20x^2}}{2} = \frac{\sqrt{100}}{2}x^2$
A1 for $5x^2$ |
| 21 | (a) | | 3 | B1 Correct cumulative frequencies (may be implied by correct heights on the grid)
M1 for at least 5 of “6 points” plotted consistently within each interval
A1 for a fully correct CF graph
cf graph |
| | (b)(i) | | 3 | B1 for 172 or read off at cf = 30 or 30.5 from a CF graph,
ft provided M1 is awarded in (a)
M1 for readings from graph at cf = 15 or 15.25
and cf = 45 or 45.75 from a CF graph with at least one of LQ or UQ correct from graph ($\pm \frac{1}{2}$ square).
A1ft provided M1 is awarded in (a) |
| | (ii) | | 3 |
IQR = UQ – LQ
12 - 14
Correct CF graph |
<table>
<thead>
<tr>
<th>Question</th>
<th>Working</th>
<th>Answer</th>
<th>Mark</th>
<th>Notes</th>
</tr>
</thead>
</table>
| 22 | | 1200 cm³ | 4 | M1 for $10 \times 2 \times 2$ and 15×2
M1 for “40” × “30”
A1 for 1200
B1 (indep) for cm³
OR
M1 for 10×15 or 2^3 or 8 indicated as scale factor
M1 for $10 \times 15 \times 2 \times 2 \times 2$
A1 for 1200
B1 (indep) for cm³ |
| 23 | $\frac{4(x + 5)}{(x + 5)(x - 3)}$ | $\frac{4}{x - 3}$ | 2 | M1 for $(x \pm 5)(x\pm3)$
A1 for $\frac{4}{x-3}$ |
| 24 | $\frac{12}{10} = 1.2$
$\frac{15}{5} = 3$
$\frac{13}{5} = 2.6$
$\frac{18}{10} = 1.8$
$\frac{3}{15} = 0.2$ | Histogram | 3 | B3 for fully correct histogram
(B2 for 4 correct blocks)
(B1 for 3 correct blocks)
(If B0, SC B1 for correct key eg $1 cm^2 = 2$ (calls)
Or frequency ÷ class interval for at least 3 frequencies)
NB Apply the same mark scheme if a different frequency density is used. |
<table>
<thead>
<tr>
<th>Question</th>
<th>Working</th>
<th>Answer</th>
<th>Mark</th>
<th>Notes</th>
</tr>
</thead>
</table>
| 25 (a) | | $a = 4, b = 5$ | 3 | M1 for sight of $(x - 4)^2$
M1 for $(x - 4)^2 - 16 + 21$
A1 for $a = 4, b = 5$
OR
M1 for $x^2 - 2ax + a^2 + b$
M1 for $-2a = -8$ and $a^2 + b = 21$
A1 for $a = 4, b = 5$ |
| (b) | | (4, 5) | 1 | B1 ft |
| 26 | 50 1 1 | $\frac{126}{720}$ | 4 | M1 for 3 fractions $\frac{a}{10}, \frac{b}{9}, \frac{c}{8}$ where $a < 10, b < 9$ and $c < 8$
M1 for $\frac{7}{10} \times \frac{3}{9} \times \frac{2}{8}$ or $\frac{3}{10} \times \frac{7}{9} \times \frac{2}{8}$ or $\frac{3}{10} \times \frac{2}{9} \times \frac{7}{8} (= \frac{42}{720})$
M1 for $\frac{7}{10} \times \frac{3}{9} \times \frac{2}{8} + \frac{3}{10} \times \frac{7}{9} \times \frac{2}{8} + \frac{3}{10} \times \frac{2}{9} \times \frac{7}{8}$
or $3 \times \frac{3}{10} \times \frac{2}{9} \times \frac{7}{8}$
A1 for $\frac{126}{720}$ oe. eg. $\frac{7}{40}$
Alternative Scheme for With Replacement
M1 for $\frac{7}{10} \times \frac{3}{10} \times \frac{3}{10} (= \frac{63}{1000})$
M1 for $\frac{7}{10} \times \frac{3}{10} \times \frac{3}{10} \times 3 (= \frac{189}{1000})$
M0 A0 No further marks |
<table>
<thead>
<tr>
<th>Question</th>
<th>Working</th>
<th>Answer</th>
<th>Mark</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>27 (a)</td>
<td></td>
<td>$a - b$</td>
<td>1</td>
<td>B1 for $a - b$ oe</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\frac{2}{5}a + \frac{3}{5}b$</td>
<td>3</td>
<td>M1 for a correct vector statement for \overrightarrow{NR} eg. $(\overrightarrow{NR} =) \overrightarrow{NQ} + \overrightarrow{QR}$ or $(\overrightarrow{NR} =) \overrightarrow{NS} + \overrightarrow{SR}$ M1 for $\frac{2}{5} \overrightarrow{SQ}$ $(+ \overrightarrow{QR})$ or $\frac{3}{5} \overrightarrow{QS}$ $(+ \overrightarrow{SR})$ $(\overrightarrow{SQ}, \overrightarrow{QR}, \overrightarrow{QS}, \overrightarrow{SR}$ may be written in terms of a and b) A1 for $\frac{2}{5}(a - b) + b$ oe or $\frac{3}{5}(b - a) + a$ oe</td>
</tr>
<tr>
<td>28 (a)</td>
<td></td>
<td>$(90, 0)$</td>
<td>1</td>
<td>B1 for $(90, 0)$ (condone $(\frac{\pi}{2}, 0)$)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Correct graph</td>
<td>1</td>
<td>B1 for graph through $(0, 2)$ $(90, 0)$ $(180, -2)$ $(270, 0)$ $(360, 2)$ professional judgement</td>
</tr>
</tbody>
</table>
Modifications to the mark scheme for Modified Large Print (MLP) papers.

Only mark scheme amendments are shown where the enlargement or modification of the paper requires a change in the mark scheme.

The following tolerances should be accepted on marking MLP papers, unless otherwise stated below:
- **Angles:** ±5º
- **Measurements of length:** ±5 mm

<table>
<thead>
<tr>
<th>PAPER: 1MA0_1H</th>
<th>Question</th>
<th>Modification</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
<td>Stem and leaf diagram: Additional horizontal line was inserted in the diagram.</td>
<td>Standard mark scheme</td>
</tr>
<tr>
<td>4</td>
<td>(b)</td>
<td>MLP only: x changed to y.</td>
<td>Standard mark scheme</td>
</tr>
<tr>
<td>7</td>
<td>(a)</td>
<td>2cm grid – shape P moved up two squares.</td>
<td>Note that the original shape P is in a different position</td>
</tr>
<tr>
<td></td>
<td>(b)</td>
<td>2cm grid. No shading of shapes – x axis -2 and -4 removed as they would obscure shape</td>
<td>Standard mark scheme</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>Braille and MLP x changed to y.</td>
<td>Standard mark scheme</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>2 cm for 5 on both axes.</td>
<td>Change of scale</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>1.5 cm grid.</td>
<td>Standard mark scheme</td>
</tr>
<tr>
<td>Question</td>
<td>Modification</td>
<td>Notes</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>--------------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>N line increased to 9 cm. Shading removed. ‘Land’ and ‘Sea’ labelled. 037 degrees was changed to 040 degrees.</td>
<td>037° changed to 040°</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>2 cm spaces between numbers.</td>
<td>Standard mark scheme</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>(b) Model as well as diagram provided. Braille only: 90 degrees written on diagram instead of the right angle sign.</td>
<td>Standard mark scheme</td>
<td></td>
</tr>
</tbody>
</table>
| 21 | Frequency table: numbers changed to 5, 5, 10, 25, 10 and 5. Grid: 1.5 cm for 5 on both axes. Right axis labelled. | Frequency numbers changed to 5, 5, 10, 25, 10, 5
(a) Cumulative frequencies 5, 10, 20, 45, 55, 60
(b) Greater tolerance needed. Median and IQR will be different to those in standard scheme. |
| 22 | (b) Models as well as diagram provided. | Standard mark scheme |
| 24 | 2cm grid both axes. In the table, the number of calls is changed to 12 14 13 20 6 | Number of calls changed to 12, 14, 13, 20, 6
So frequency density will be 1.2, 2.8, 2.6, 2, 0.4 |
| 27 | vectors ‘a’ and ‘b’ in larger font size | Standard mark scheme |
| 28 | Size of diagram enlarged. Cross at A changed to a filled-in circle | Standard mark scheme |